
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

57

COMBINING TESSERACT AND ASPRISE RESULTS TO IMPROVE

OCR TEXT DETECTION ACCURACY

Remus PETRESCU 1*

Sergiu MANOLACHE 2

Costin-Anton BOIANGIU 3

Giorgiana Violeta VLĂSCEANU 4

Cristian AVATAVULUI 5

Marcel PRODAN 6

Ion BUCUR 7

ABSTRACT

We live in a highly technologized era, where a great number of physical documents have

started or must be digitized in order to make them accessible anywhere, for a great

number of people. Optical Character Recognition (OCR) is one of the techniques which

are widely used in order to recognize characters from specific images obtained after

scanning. Different types of systems have been developed in order to perform Optical

Character Recognition for various types of documents, but the task is not easy, as

documents differ not in terms of content, but have also in formats, fonts, age or

deterioration. After reviewing the existing systems, the paper at hand proposes one which

uses two well-known OCR engines and a voting principle based on weights. There are

also analyzed the results of our combined technique, as opposed to each individual

approach of the two chosen engines.

KEYWORDS: text recognition accuracy, OCR, Tesseract, Asprise, text detection

1* corresponding author, Engineer, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

remus.petrescu28@gmail.com
2 Engineer, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania, xergiu90@yahoo.com
3 Professor, PhD Eng., ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

costin.boiangiu@cs.pub.ro
4 Teaching assistant, PhD stud., Eng., ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

giorgiana.vlasceanu@cs.pub.ro
5 PhD stud., Eng., ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

cristianavatavului@gmail.com
6 Engineer, PhD Student, “Politehnica” University of Bucharest, 060042 Bucharest, Romania,

marcoprod@gmail.com
7 Associate Professor PhD Eng., ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

ion.bucur@cs.pub.ro

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

58

INTRODUCTION

In the past years, a great number of written documents have been digitized, using scanners

or different types of specific methods. The need for creating a system that can translate

given data, such as pictures, to editable written documents, has appeared. The technology

created for this task is Optical Character Recognition (OCR).

The problem with OCR engines is that a specific one may be good at recognizing only a

specific type of scanned documents with certain characteristics - deterioration, paper

quality, fonts and so on, and not always with 100% accuracy.

The focus of the presented research is set on how several types of OCR engines can be

applied to a dataset of input scanned documents to yield the best result. In the next

sections, we will analyze the potential result of each system and based on their

performance on a specific document type, a voting algorithm will be employed in which

the best engine has more weight in the overall decision process. We will start by giving

details about the used systems and all possible alternatives. We will further present our

system and analyze its workflow. Finally, we will present the results after the images

were processed through our system.

USED SYSTEMS AND RELATED WORK

At the core of this paper is situated the OCR technology, which is the artificially reading

process, in which image data from documents or natural scenes containing written

messages is converted into text data [1].

Modern OCR engines are powerful because they provide the above-mentioned

functionality without the need for developing the code further. The first OCR engines had

to be trained on huge amounts of data to recognize characters or fonts and they were not

always reliable because of the diversity and level of degradation that was present in

specific datasets (skewed or blurred pictures, containing special characters, etc.). Some of

the most widely used OCR engines, systems, models examples include:

• Ocropus [2] - or Ocropy, OCR engine based on LSTM;

• Ocrad [3] - The GNU OCR;

• SwiftOCR [4] - a fast and simple OCR library written in Swift;

• Attention-OCR [5] – a model for extraction of texts in real-world scenes;

• Tesseract [6] – mature OCR engine, including both NN and LSTM text

recognition approaches;

• Asprise [7] - used as an OCR and barcode recognition SDK with high

performance;

• Abby Finereader [8] – high-performance OCR and Layout detection engine

In this paper, we focused on the last two OCR engines described above, Tesseract and

Asprise, and combined them to obtain better results. Each engine outputs a confidence

level to measure if the detection process produces valid results.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

59

Tesseract

Tesseract is a Google-developed OCR project, from 2006 [6]. It evolved a lot during the

years, starting from a simple NN-based text reader, without any support for layout

analysis, into a fully-featured system, which recognizes common layouts and offers both

NN and LSTM recognition support. The later versions of Tesseract support different

output formats, including hOCR with layout and formatting information [9], or may even

be integrated with frontends such as Ocropus [10]. Even though initially designed to work

for the English language and languages that read from left to right, Tesseract has been

eventually trained to process different scripts, text orientations and reading orders [11].

Tesseract has no GUI and is run from the command-line interface, but several attempts to

create one exist, such as OCRFeeder [12].

Despite having a lot of technical advancements, Tesseract has also several shortcomings,

especially when we are taking into account input image page defects like:

• Invalid scanning resolution which results in less than 20 pixels font size;

• Artificially introduced skew, in the image acquisition process;

• Suboptimal image binarization due to changes in brightness across large areas,

without significant edges;

• Extra-border surrounding the useful page data.

Asprise

The second system which we will describe is Asprise, a commercial OCR engine which has

numerous abilities, including reading barcodes. It also possesses a number of features like:

• Solid text recognition, with quality that may be traded for speed;

• Multi-threading support and GPU acceleration, ensuring optimal use of the

computing system resources;

• Multiple output formats.

SYSTEM WORKFLOW

After the analysis of Tesseract and Asprise, a new system is proposed, which uses both

OCR engines and a voting mechanism based on weights to obtain the best output possible.

Input files are processed through a series of steps, which can be observed in Figure 1.

They are executed as follows:

• The system receives the input file and sends it to each OCR engine;

• Each OCR generates an output file with a certain confidence level - for each word

in the case of Tesseract and for each row for Asprise (to make the data relevant we

assigned the same confidence value to each word of the line), as seen in Figure 2);

• The system uses a reference test document in which all the correct words are

manually inputted. The results from the system and manual set are compared in

order to calculate the overall document correctness;

• Using the overall correctness of each output document, the system assigns a

weight to each engine;

• The system combines the results based on the above-given weight.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

60

Figure 1. Steps of processing input files in the proposed system

Figure 2. The output generated by Asprise (left) and generated by Tesseract (right)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

61

RESULTS

After receiving the input file, each OCR has created its own visual interpretation of the

text based on the confidence level.

Figure 3. The main scenario input test image

The input file is represented by Figure 3, whilst the output OCR texts color-bordered

using the specific engine confidence in Figure 4.

Figure 4. The visual output generated: Tesseract (top) and Asprise (bottom)

The following step was the analysis of the output files of each engine as seen in Figure 5

and their comparison to the test output in order to determinate and set the weight.

Figure 5. The output generated by Asprise (top) and by Tesseract (bottom)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

62

In the last step, we combined the documents based on their given weights and obtained

the final output which can be seen in Figure 6.

Figure 6. Results after combining the results (red Tesseract and blue Asprise)

A series of experiments were performed in order to assess the most appropriate weights.

In figures 7 and 8 are identified some results based on the confidence level of each OCR

engine. The intensity of the color gives the confidence level: green represents high

confidence, red means low confidence.

Figure 7. The blurred scenario input test image

Figure 8. Output Tesseract (left) and Aspire (right)

After analyzing more situations, it is noticed that for any level of image blur, but

especially for an intense one, Asprise tends to perform better than Tesseract. One good

example is presented in Figure 9.

Figure 9. Output Tesseract (left) and Aspire (right)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

63

CONCLUSIONS

When the results of several OCR engines were compared, it can be observed that each one

of them has its own shortcomings when dealing with the degradation of the input files. In

order to minimize the possible erroneous results given by the low-quality files which most

engines will encounter, we decided to create a weight-based voting mechanism which

analyzes both results and generate an output based on the confidences of the individual

results.

The proposed approach improved the probability of creating a correct result by combining

the individual engines’ results into a single output, thus resulting in a higher detection

accuracy than the individual output files.

ACKNOWLEDGEMENT

This work was supported by a grant of the Romanian Ministry of Research and

Innovation, CCCDI - UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0689 /

„Lib2Life- Revitalizarea bibliotecilor si a patrimoniului cultural prin tehnologii avansate”

/ "Revitalizing Libraries and Cultural Heritage through Advanced Technologies", within

PNCDI III.

REFERENCES

[1] Chaudhuri Arindam, Mandaviya Krupa, Badelia Pratixa, Ghosh Soumya K.,

Optical Character Recognition Systems, Springer International Publishing, 2017

[2] ocropy Wiki, URL: https://github.com/tmbdev/ocropy/wiki, Accessed on March 14,

2019

[3] Ocrad - The GNU OCR, URL: https://www.gnu.org/software/ocrad, Accessed on

March 14, 2019

[4] Fast and simple OCR library written in Swift, URL:

https://github.com/garnele007/SwiftOCR, Accessed on March 14, 2019

[5] Visual Attention based OCR, URL: https://github.com/da03/Attention-OCR,

Accessed on March 14, 2019

[6] Tesseract OCR, https://github.com/tesseract-ocr/tesseract/wiki, Accessed on March

14, 2019

[7] Asprise OCR and Barcode Recognition, URL: https://asprise.com/royalty-free-

library/ocr-api-for-java-csharp-vb.net.html, Accessed on March 14, 2019

[8] ABBYY FineReader Engine, URL: https://www.abbyy.com/en-us/ocr-sdk/,

Accessed on March 14, 2019

[9] What output formats can Tesseract produce?, URL: https://github.com/tesseract-

ocr/tesseract/wiki/FAQ#what-output-formats-can-tesseract-produce, Accessed on

March 14, 2019

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

64

[10] Thomas Breuel, “Announcing the OCRopus Open Source OCR System”, The

official Google Code Blog entry, April 09, 2007, URL:

http://googlecode.blogspot.com/2007/04/announcing-ocropus-open-source-

ocr.html, Accessed on March 14, 2019

[11] OCR – Community Help Wiki, URL: https://help.ubuntu.com/community/OCR,

Accessed on March 14, 2019

[12] OCRFeeder, URL: https://wiki.gnome.org/Apps/OCRFeeder, Accessed on March

14, 2019.

